more than feasibility of the procedure has been demonstrated. However, the early conclusion that robotic technology holds a significant potential in pushing the envelope of minimally invasive vascular surgery, seems justified.

Conclusions and future prospects

Whereas for occlusive aortoiliac disease surgical bypass grafting has been largely replaced by endovascular techniques, aneurysmal disease still poses considerable challenges to the endovascular therapist. Especially long term results of endovascular AAA repair have been disappointing, leaving opportunities for conventional surgical techniques. Moreover, if with the development of videoscopic and robotic technology invasiveness and complication rates of surgical aortic replacement can be reduced, a come back of surgical replacement, especially in younger patients, may be anticipated. Also, in conjunction with endovascular graft placement, robot-assisted videoscopic suturing techniques may proof invaluable in graft fixation and aortic branch management both at thoracic and abdominal levels. Celiac, mesenteric and renal revascularization procedures, if unsuitable for endovascular repair, will be greatly facilitated by robotic techniques. In summary, with the expected further technical advancement and availability of robotically aided videoscopic techniques it seems important for vascular surgeons to keep their basic laparoscopic skills updated in anticipation of marked reduction or even disappearance of conventional "open" vascular surgery within the upcoming years.

References