Death, unconsciousness and the brain

Steven Laureys

Abstract | The concept of death has evolved as technology has progressed. This has forced medicine and society to redefine its ancient cardiorespiratory centred diagnosis to a neurocentric diagnosis of death. The apparent consensus about the definition of death has not yet appeased all controversy. Ethical, moral and religious concerns continue to surface and include a prevailing malaise about possible expansions of the definition of death to encompass the vegetative state or about the feared bias of formulating criteria so as to facilitate organ transplantation.

Do we have the right to stop treatment using criteria that pretend to know the boundary between life and death?

P. Mollaret and M. Goulon

Only a very bold man, I think, would attempt to define death.

H. K. Beecher

Throughout history, society and medicine have struggled with the definition and determination of death (BOX 1). In ancient Egypt and Greece, the heart was thought to create the vital spirits and the absence of a heartbeat was regarded as the principal sign of death. The first person to consider irreversible absence of brain function to be equivalent to death was Moses Maimonides (1135–1204), the foremost intellectual figure of medieval Judaism, who argued that the spasmodic jerking observed in decapitated humans did not represent evidence of life as their muscle movements were not indicative of presence of central control. However, it was not until the invention of the positive pressure mechanical ventilator by Bjorn Ibsen in the 1950s, and the widespread use of high-tech intensive care in the 1960s that cardiac, respiratory and brain function could be truly dissociated. Patients with severe brain damage could now have their heartbeat and systemic circulation provisionally sustained by artificial respirator support. Such profound unconscious states had never been encountered before, as, until that time, all such patients had died instantly from apnoea.

The earliest steps towards a neurocentric definition of death were European1,2. In 1959, French neurologists Mollaret and Goulon first discussed the clinical, electrophysiological and ethical issues of what is now known as brain death, using the term ‘coma dépassé’ (irretrievable coma). Unfortunately, their paper was written in French and remained largely unnoticed by the international community. In 1968, the Ad Hoc Committee of Harvard Medical School, which included ten physicians, a theologian, a lawyer and a historian of science, published a milestone paper defining death as irreversible coma3. The report “opened new areas of law, and posed new and different problems for theologian and ethicist ... it has made physicians...”. Some years later, neuropathological studies showed that damage to the brainstem was critical for brain death. These findings initiated the concept of ‘brainstem death’4 and led UK physicians to define brain death as complete, irreversible loss of brainstem function5,6. "if the brainstem is dead, the brain is dead, and if the brain is dead, the person is dead."

The tragic death of Terri Schiavo, misused by both ‘right-to-life’ and ‘right-to-die’ activists, recently illustrated to the world the difficulties that surround death in the vegetative state7,8. Many uneducated commentators have inaccurately referred to Schiavo’s condition as ‘brain dead’ or ‘neocortical dead; and her gravestone reads, “Departed This Earth February 25, 1990” — that is, the date on which her brain was damaged (although this was not total, and she was, therefore, not dead), whereas it was on March 31 2005 that her entire brain died and her heart irreversibly stopped beating.

This article has a broad ambit. It discusses the medical, philosophical, legal and ethical issues that are involved in the determination of human death. The brain-centred definition of death has a whole brain, brainstem and neocortical formulation. At present, only the two former concepts have an accepted medical basis. According to the consciousness- or personhood-centred neocortical definition of death, patients in a vegetative state are considered dead. This article emphasizes that brain death equals death; focuses on the differences between brain death and the vegetative state; argues that the neocortical definition of death cannot be implemented on the basis of reliable anatomical criteria or clinical tests; and briefly discusses the law and ethics of death and the end of life.

Brain death equals human death

Brain death means human death determined by neurological criteria. It is an unfortunate term, as it misleadingly suggests that there are two types of death: ‘brain’ death and ‘regular’ death. There is, however, only one type of death, which can be measured in two ways — by cardiorespiratory or neurological criteria. This misapprehension might explain much of the public and professional confusion about brain death. Bernat and colleagues have distinguished three levels of discussion: the definition or concept of death (a philosophical matter); the anatomical criteria of
death (a philosophical/medical matter); and the practical testing, by way of clinical or complementary examinations, that death has occurred (a medical matter)19.

The concept of death. At present, the most accepted definition of death is the “permanent cessation of the critical functions of the organism as a whole”21. The organism as a whole is an old concept in theoretical biology18 that refers to its unity and functional integrity — not to the simple sum of its parts — and encompasses the concept of an organism’s critical system19. Critical functions are those without which the organism as a whole cannot function: control of respiration and circulation, neuroendocrine and homeostatic regulation, and consciousness. Death is defined by the irreversible loss of all these functions. The tiresome debate about whether this loss is a process22 or an event21 is seemingly insolvable (Fig. 1).

In this article, death is regarded as the discontinuous event (linguistically it can be understood only as an event21) that separates the continuous process of dying from the subsequent disintegration. The radical transition from life to death has been proposed23 to follow a supercritical Hopf bifurcation (a bifurcation presenting a combination of continuity and discontinuity that is known from chaos and dynamical systems theory23) — not unlike Dehaene and Changeux’s proposed discontinuities between consciousness and unconsciousness24.

The brain-centred definition of human death has three formulations, known as whole brain, brainstem and neocortical death. Whole brain and brainstem death are both defined as the irreversible cessation of the organism as a whole, but differ in their anatomical interpretation. Because many areas of the supratentorial brain (including the neocortex, thalami and basal ganglia) cannot be accurately tested for clinical function in a comatose patient, most bedside tests for brain death (such as cranial nerve reflexes and apnoea testing) directly measure function of the brainstem alone7. The neocortical formulation of death, which was proposed in the early days of the brain death debate25, advocates a fundamentally different concept of death: the irreversible loss of the capacity for consciousness and social interaction. By application of this consciousness- or personhood-centred definition of death, its proponents classify patients in a permanent vegetative state and anencephalic infants as dead. This most progressive and controversial concept of death is dealt with separately.

Some physicians26, philosophers27 and ultraconservative Catholic theologians28 have criticized the brain-centred definition and advocate a circulatory formulation of death defined by the irreversible cessation of circulation. Alan Shewmon, its most persuasive proponent, cites two lines of data to support this contention. First, he argues that the brain is merely one organ among many equally important ones and deserves no special status in death determination, as it performs no qualitatively different forms of bodily integration or homeostasis from the spinal cord27. In his view, a living body possesses not an integrator but integration, a holistic property that derives from the mutual interaction among all parts24. Second, he has presented at least 50 thought-provoking cases of children and adults with brain death who were treated aggressively and had their circulation maintained for many months or longer26. There have also been pregnant patients with brain death for whom continued intensive care treatment was requested until the foetus was mature enough to be born21–24. The most exceptional of such cases was the successful maintenance of a pregnant woman with brain death from 17 to 32 weeks of gestation22. These cases have been used by Shewmon to show that the neurocentric concept of death is inherently counterintuitive, because how could a dead body continue visceral organ functioning for extended periods, grow or gestate infants21,29?

In response to the integration—regulation criticism, Bernat4 has counter-argued that the circulatory formulation has the inverse problem of the higher brain formulation. Whereas the higher brain formulation generates a criterion that is necessary but insufficient for death, the circulatory formulation generates a criterion that is sufficient but not necessary for death25. The homeostatic capacities of the brain are not the sole evidence of function of the organism as a whole — as previously stated, the functions of circulation, respiration and consciousness are also regarded as critical functions. With regard to the exceptional ‘chronic’ cases, their chronicity merely “indicates that their bodily decomposition has been delayed until their circulation has ceased25 and reveals heroic technological support in the modern intensive care unit — "an example of what science and technology..."
could do, but should not do"\(^\text{137}\). Brain death signifies death not because it is invariably imminently followed by asystole, but because it is accompanied by irreversible loss of critical cerebral functions. The concept of brain death as irreversible loss of the capacity of the organism to function as a whole that results from the permanent loss of its critical system is not invalidated by the time lag between the diagnosis of brain death and cardiac arrest\(^\text{146}\). From a pragmatic point of view, the advocates of the circulatory formulation have not swayed the majority, who are intuitively attracted to the brain death formulation and find it sufficiently coherent and useful to wish to preserve it as public policy\(^\text{145}\).

Criteria of death. The whole brain formulation requires the bedside demonstration of irreversible cessation of all clinical functions of the brain, and is the most widely accepted. The brainstem formulation regards irreversible cessation of clinical functions of the brainstem as not only necessary but also sufficient for the determination of death. Pallis, one of the most eloquent advocates of brainstem death, argues that the brainstem is the through-station for almost all hemispheric arousal (which is essential for consciousness), and the centre of respiration\(^\text{146}\).

Brain death is classically caused by a brain lesion (for example, massive traumatic injury, intracranial haemorrhage or anoxia) that results in an intracranial pressure higher than the mean arterial blood pressure. This causes intracranial circulation to cease and brainstem damage due to herniation. However, using the brainstem formulation of death, unusual but existing cases of catastrophic brainstem lesion (often of haemorrhagic origin) that spared the thalami and cerebral cortex can be declared brain dead in the absence of clinical brainstem function, despite intact intracranial circulation. Therefore, a patient with a primary brainstem lesion (who did not develop raised intracranial pressure) might be declared dead by the UK doctrine but not the US doctrine\(^\text{96}\). Theoretical cases in which a multifocal brainstem lesion could selectively impair all brainstem function that can be clinically assessed while preserving some residual (but clinically undetectable) function of the ascending reticular activating system sufficient to warrant some residual, fluctuating form of awareness could lead to diagnostic error. In practice, no such case has ever been reported. By definition, confirmatory examinations,
such as functional imaging or electrophysiology, would be needed to identify these cases, to which some authors have applied the term “super locked-in syndrome”.

Testing of death. The first (and only) prospective study validating the neurocentric criteria of death was the National Institutes of Health (NIH)-sponsored multicentre US prospective study validating the neurocentric testing of death.

The authors recommended re-examination required by the Harvard criteria. The exact moments of the beginning and ending of life remain a challenge that science has not yet resolved.

Box 2 | **Criteria for brain death**

The criteria detailed below are from the guidelines set out by the American Academy of Neurology.

- Demonstration of coma
- Evidence for the cause of coma
- Absence of confounding factors, including hypothermia, drugs, and electrolyte and endocrine disturbances
- Absence of brainstem reflexes
- Absence of motor responses
- Apnoea

A repeat evaluation after a further 6 h is advised, but the time period is considered arbitrary.

Confirmatory laboratory tests are only required when specific components of the clinical tests cannot be reliably evaluated.

Vegetative state is not brain death

Like brain death, the vegetative state is a clinical diagnosis that, when it becomes permanent, can be regarded as a tragic artefact of modern technology. When Jennet and Plum coined the term “wakefulness without awareness” in 1972 (ref. 52), they cited the Oxford English Dictionary to clarify their choice of the term ‘vegetative’ as: “to vegetate is to live a merely physical life devoid of intellectual activity or social intercourse” and “vegetative describes an organic body capable of growth and development but devoid of sensation and thought”.

Box 3 summarizes the criteria that must be met for the diagnosis of vegetative state.

Unlike brain death (excluding confounding factors, such as intoxication and hypothermia, as required by its definition) the vegetative state can be partially or totally reversible. ‘Persistent’ vegetative state was arbitrarily coined as a vegetative state present 1 month after the occurrence of brain damage, but does not mean that it is irreversible. ‘Permanent’ vegetative state does imply that the patient will not recover. This term was introduced by the Multi-Society Task Force on Persistent Vegetative State to denote irreversibility 3 months after a nontraumatic brain injury and 12 months after traumatic injury. It is very important to stress the difference between persistent vegetative state and permanent vegetative state, which are, unfortunately, too often identically abbreviated to PVS, causing unnecessary confusion.

When the term persistent vegetative state was first described, it was emphasized that persistent did not mean absence of heart beat and breathing.
permanent; it is now recommended that ‘persistent’ be omitted and patients be described as having been vegetative for a certain time. When there is no recovery after a specified period (3–12 months, depending on aetiology) the state can be declared permanent, and only then do the ethical and legal issues that surround withdrawal of treatment arise16,54. The vegetative state can also be observed in the end-stages of chronic neurodegenerative diseases, such as Alzheimer’s disease, and in anencephalic infants.

It might seem that the difference between brain death and the vegetative state is so fundamental that it need not be reviewed. However, in reality, both terms are all too often mixed up in the lay — and even medical — press. Part of this misunderstanding might have its origin in the interchangeable lay use of the terms brain dead and vegetative57. This had already started when the New York Times (August 5, 1968) announced the Harvard criteria for brain death. In the accompanying editorial it read: “As old as medicine is the question of what to do about the human vegetable ... Sometimes these living corpses have survived for years ... It is such cases, as well as the need for organs to be transplanted that the Harvard faculty committee had in mind in urging that death be redefined as irreversible coma”55. More recently, one study reported that slightly less than half of surveyed US neurologists and nursing home directors believed that patients in a vegetative state could be declared dead54.

Below, I briefly review the clinical, diagnostic and neuropathological differences between brain death and the vegetative state.

Clinical signs. Both patients with brain death and those in a vegetative state are unconscious following severe brain injury. The first difference between the two is the time of diagnosis. Brain death can be diagnosed with an extremely high rate of probability within hours to days of the original insult46, whereas diagnosing irreversible vegetative state takes many months at best (3 months following a nontraumatic brain injury and 12 months after traumatic injury, as stated above53). Unlike patients with brain death who are, by definition, comatose (that is, never show eye opening, even on noxious stimulation), patients in a vegetative state (who, it should be stressed, are not in a coma), classically have their eyes spontaneously open, which can be very disturbing to families and caregivers. Patients with brain death are apnoeic and necessarily require controlled artificial ventilation, whereas patients in a vegetative state can breath spontaneously without assistance (even if during the acute stage ventilation must sometimes be artificially assisted). Unlike patients with brain death, those in a vegetative state have preserved brainstem reflexes and hypothalamic functioning (for example, regulation of body temperature and vascular tone). At best, patients with brain death only show slow body movements generated by residual spinal activity: finger jerks, undulating toe flexion sign, triple flexion response, Lazarus sign, pronation-extension reflex and facial myokymia may be present in up to a third of patients59,60. Patients in a vegetative state show a much richer array of motor activity, albeit always nonpurposeful, inconsistent and coordinated only when expressed as part of subcortical, instinctively patterned, reflexive response to external stimulation: moving trunk, limbs, head or eyes in meaningless ways and showing startle myoclonus to loud noises53. Finally, patients with brain death never show any facial expression and remain mute, whereas patients in a vegetative state may occasionally smile or cry, utter grunts and sometimes moan or scream53,106.

Ancillary diagnostic studies. Cerebral angiography and transcranial Doppler sonography55 can be used with high sensitivity and 100% specificity to document the absence of cerebral blood flow in brain death55. Similarly, radionuclide cerebral imaging, such as single photon emission computed tomography and positron emission tomography (PET), classically show the so-called hollow-skull sign, confirming the absence of neuronal function in the whole brain43,62 (FIG. 2). Such ‘functional decapitation’ is never observed in patients in a vegetative state, in whom overall cortical metabolism and blood flow are known to be substantially reduced (40–50% of normal values)41 but never absent. Some PET studies have even reported normal cerebral metabolism41 or blood flow62 in individuals in a vegetative state. Furthermore, PET studies measuring cerebral metabolism at rest cannot be reliably used to differentiate between patients in a vegetative state and those who are minimally conscious66,67.

Box 3 | Criteria for the vegetative state

The criteria listed here comprise the guidelines of the US Multi-Society Task Force on Persistent Vegetative State53.

- No evidence of awareness of self or environment and an inability to interact with others
- No evidence of sustained, reproducible, purposeful or voluntary behavioural responses to visual, auditory, tactile or noxious stimuli
- No evidence of language comprehension or expression
- Intermittent wakefulness manifested by the presence of the sleep–wake cycle
- Sufficiently preserved hypothalamic and brainstem autonomic functions to permit survival with medical and nursing care
- Bowel and bladder incontinence
- Variably preserved cranial nerve and spinal reflexes

| Figure 2 | Illustration of the differences in resting brain metabolism measured in brain death and in the vegetative state, compared with controls. | The image in patients with brain death shows a clear-cut ‘hollow-skull sign’, which is tantamount to a ‘functional decapitation’. This is markedly different from the situation seen in patients in a vegetative state, in whom cerebral metabolism is massively and globally decreased (to 50% of normal value) but not absent. The colour scale shows the amount of glucose metabolized per 100 g of brain tissue per minute. |
The EEG in patients with brain death shows an absence of electrocortical activity (that is, isoelectric recording) with a sensitivity and specificity of 90%48. It is the most validated and, because of its wide availability, preferred confirmatory test for brain death implemented in many countries’ guidelines. The EEG of patients in a vegetative state is only sporadically isoelectric or of very low voltage53, most frequently it shows a diffuse slowing (that is, generalized polymorphic delta or theta rhythm)69.

Somatosensory evoked potentials typically indicate arrest of conduction at the cervicomedullary level in brain death70, whereas they frequently show preserved cortical potentials (N20) in a vegetative state71. Brainstem auditory evoked potentials usually only show a delayed wave I (originating in the cochlear nerve) in brain death72 and preserved brainstem potentials in a vegetative state. However, there are too few evoked potential studies with detailed clinical correlations for this to be considered of validated diagnostic value.

Pathological features. Anatomopathology in patients with brain death who are receiving maximal artificial means of support will inevitably end up showing what is known as ‘respirator brain’: surface vasocongestion due to venous engorgement, thrombosis in cortical veins and sinuses, subarachnoid haemorrhage, and cortical congestion and haemorrhage will be observed after about 12 h of a nonperfused state73. After about a week an autolysed liquefied brain will pour from the opened skull73. Such dramatic findings are never encountered in a vegetative state. In patients with anoxic vegetative state pathological features encompass multifocal laminar cortical necrosis, diffuse leucoencephalopathy and bilateral thalamic necrosis. Patients in a vegetative state following blunt head injury classically show diffuse white matter damage with neuronal loss in thalami and hippocampi74.

Neocortical death myth

In 1971, Scottish neurologist Brierley and his colleagues urged that death be defined by the permanent cessation of “those higher functions of the nervous system that demarcate man from the lower primates75. This neocortical or higher brain death definition has been further developed by others, mainly philosophers25,76, and its conceptual basis rests on the premise that consciousness, cognition and social interaction, not the bodily physiological integrity, are the essential characteristics of human life. The higher brain concept produces the neocortical death criterion, in which only the functions of the neocortex, not of the whole brain or of the brainstem, must be permanently lost. Clinical and confirmatory tests for neocortical death have never been validated as such.

Based on the neocortical definition of death, patients in a vegetative state following an acute injury or chronic degenerative disease and anencephalic infants are considered dead. Depending on how “irreversible loss of capacity for social interactions”77 is interpreted, even patients in a permanent “minimally conscious state”78, who, by definition, are unable to functionally communicate, could be regarded as dead. I argue that, despite its theoretical attractiveness to some, this concept of death cannot be reliably implemented using anatomical criteria nor in reliable clinical testing.

First, our current scientific understanding of the necessary and sufficient neural correlates of consciousness is incomplete at best79,80. In contrast to brain death, for which the neuroanatomy and neuropathology are both well established, anatomopathology, neuroimaging and electrophysiology cannot, at present, determine human consciousness. Therefore, no accurate anatomical criteria can be defined for a higher brain formulation of death.

Second, clinical tests would require the provision of bedside behavioural evidence showing that consciousness has been irreversibly lost. There is an irreducible philosophical limitation in knowing for certain whether any other being possesses a conscious life81. Consciousness is a multifaceted subjective first-person experience and clinical evaluation is limited to evaluating patients’ responsiveness to the environment82. As previously discussed, patients in a vegetative state, unlike patients with brain death, can move extensively, and clinical studies have shown how difficult it is to differentiate ‘automatic’ from ‘willed’ movements83. This results in an underestimation of behavioural signs of consciousness and, therefore, a misdiagnosis,
which is estimated to occur in about one third of patients in a chronic vegetative state. In addition, physicians frequently erroneously diagnose the vegetative state in elderly residents with dementia in nursing homes. Clinical testing for absence of consciousness is much more problematic than testing for absence of wakefulness, brainstem reflexes and apnoea in whole brain or brainstem death. The vegetative state is one end of a spectrum of awareness, and the subtle differential diagnosis between this and the minimally conscious state necessitates repeated evaluations by experienced examiners. Practically, the neocortical death concept also implies the burial of breathing ‘corpses’.

Third, complimentary tests for neocortical death would require provision of confirmation that all cortical function has been irreversibly lost. Patients in a vegetative state are not apallic, as previously thought, and may show preserved islands of functional pallium or cortex. Recent functional neuroimaging studies have shown limited, but undeniable, neocortical activation in patients in a vegetative state, disproving the idea that there is complete neocortical death in the vegetative state. However, as previously stated, results from these studies should be interpreted cautiously for as long as we do not fully understand the neuronal basis of consciousness. Again, complimentary tests for proving the absence of the neocortical integration that is necessary for consciousness are, at present, not feasible and unvalidated.

As discussed above, the absence of whole brain function in brain death can be confirmed by means of cerebral angiography (nonfilling of the intracranial arteries), transcranial Doppler ultrasonography (absent diastolic or reverberating flow), nuclear imaging (absence of cerebral blood flow: hollow-skull sign) or EEG (absent electrical activity). In contrast to brain death, in which prolonged absent intracranial blood flow proves irreversibility, the massively reduced — but not absent — cortical metabolism observed in the vegetative state cannot be regarded as evidence for irreversibility. Indeed, fully reversible causes of altered consciousness, such as deep sleep and general anaesthesia, have shown similar decreases in brain function, and the rare patients who have recovered from a vegetative state have been shown to resume normal activity in previously dysfunctional associative neocortex.

However, proponents of the neocortical death formulation might counter-argue that because all definitions of death and vegetative state are clinical, finding some metabolic activity in functional neuroimaging studies does not disprove the concept (as these studies are measuring non-clinical activities), although this does contrast with the validated non-clinical laboratory tests used to confirm whole brain death.

Finally, proving irreversibility is key to any concept of death. The clinical testing of irreversibility has stood the test of time only in the framework of whole brain or brainstem formulations of death. Indeed, since Mollaret and Goulon first defined their neurological criteria of death more than 45 years ago, no patient in apnoeic coma who was properly declared brain (or brainstem) dead has ever regained consciousness. This cannot be said for the vegetative state, in which permanent is probabilistic — the chances of recovery depend on a patient’s age, aetiology and time spent in the vegetative state. Unlike brain death, for which the diagnosis can be made in the acute setting, the vegetative state can only be regarded as statistically permanent after long observation periods, and even then there is a chance that some patients might recover. However, it should be stressed that many anecdotes of late recovery are difficult to substantiate and it is often difficult to know how certain the original diagnosis was.

Ethics of death and dying

The debate on the need to withhold or withdraw ‘futile’ life-prolonging treatments and the idea of ‘death with dignity’ was started by intensive care physicians (not ethicists or lawyers) in the mid-1970s. At present, almost half of all deaths in intensive care follow a decision to withhold or withdraw treatment. There is no moral or legal distinction between withholding or withdrawing.

As discussed above, a person who is brain dead is dead — disconnecting the ventilator will not cause him or her to die. Patients in a vegetative state are not dead, but when their situation becomes hopeless it can be judged unethical to continue their life-sustaining treatment. Unlike patients with brain death, patients in a vegetative state do not usually require ventilatory or cardiac support, needing only artificial hydration and nutrition. The internationally reported case of Terri Schiavo centred first on opposing opinions between her husband and parents about whether she would wish to continue living in such a severely disabled state, and also on the lack of family consensus regarding her diagnosis of vegetative state. This case illustrated how hard it is for lay persons (and inexperienced physicians and policy makers) to accept the medically established ethical framework that justifies letting patients in an irremediable vegetative state die. Misinformation stemming from high-profile cases such as Schiavo’s may increase societal confusion and consternation about end-of-life decision-making.

Stopping artificial nutrition and hydration to patients in a vegetative state is a complex issue, and it would be beyond the scope of this paper to cover all ethical, legal and practical dilemmas involved (see Jennett’s recent monograph for an in-depth account). It should be stressed that “unless it is clearly established that the patient is permanently unconscious, a physician should not be deferred from appropriately aggressive treatment,” and physicians also “have an obligation to provide effective palliative treatment.” Several US and medical societies and interdisciplinary bodies, including the American Medical Association, the British Medical Association and the World Medical Association, have asserted that surrogate decision makers and physicians with advance directives provided by patients have the right to terminate all forms of life-sustaining medical treatment, including hydration and nutrition, in patients in a permanent vegetative state.

The moral values that underlie these guidelines are the principles of autonomy, beneficence, non-maleficence and justice. Informed, mentally competent patients should consent to any treatment they receive and have the right to make choices regarding their bodies and lives. The primary factor determining the level of treatment provided for an incompetent patient should reflect the patient’s personally expressed wishes for treatment in this situation. It should be noted that the principle of autonomy was developed as a product of the Enlightenment in Western culture and is not yet strongly emphasized beyond the US and Western Europe (for example, in Japan). In the Western world, the main challenge for autonomy in justifying a right to refuse life-prolonging treatment comes from the vitalist religious view (mainly from orthodox Jews, fundamentalist Protestants and conservative Roman Catholics) that holds that only God should determine when life ends.

In the past, physicians have interpreted beneficence to mean promotion of continued life, at almost any cost. With the advancement of medical technology, medicine is now ethically obliged not to promote life at all costs in a paternalistic way but rather to enable patients to choose what type of life represents a ‘good’ life to them and
the limitations of spouses’ predictions of values and can therefore be in disagreement should now depend on patients’ individual what type of life does not. Medical choices and healthy people tend to underestimate patients with acute irreversible severe brain damage became morally accepted.

With regard to life-prolonging treatments in chronic conditions such as the vegetative state, many have found it difficult to view artificial hydration and nutrition as extraordinary means. However, recent ethical and legal discussions have abandoned the extraordinary versus ordinary dichotomy in favour of disproportionate versus proportionate treatments. Many prominent progressive Catholic theologians have accepted the idea of therapeutic futility in patients in an irreversible vegetative state, and have defended the decision to withdraw nutrition and hydration in well-documented cases. Nevertheless, Pope John Paul II, addressing an international congress on the vegetative state in March 2004 (for details see Further information), considered that the cessation of artificial life-sustenance to patients in a permanent vegetative state could never be morally accepted, whatever the situation.

However, many of the meeting’s invited neuroscientists had more nuanced viewpoints, and some Roman Catholic theologians considered it to be at variance with Christian tradition. The moral legitimacy to inquire about the duty to treat at all cost (that is, therapeutic obstinacy), which was accepted by the Catholic Church for acute cases of severe neurological damage (irreversible coma) in 1957 (REF. 147), stands in contrast to the Church’s recent refusal to allow withdrawal of life-sustaining treatment in chronic cases (irreversible vegetative state)148. The official Catholic position de-emphasizes the reality of irreversibility in longstanding vegetative state and does not consider artificial nutrition and hydration to be treatments. So far, it has not changed practices in the US, where withdrawal of life-sustaining treatment from patients in an irreversible vegetative state remains a settled view; a view that was endorsed by the US Supreme Court in the case of Nancy Cruzan, and that is held by many other medical, ethical and legal authorities (BOX 5).

Conclusions and future perspectives

In conclusion, brain death is death and irreversible vegetative state is not. Of the two bio-philosophical concepts of brain death (the ‘whole brain’ and the ‘brainstem’ formulation), defined as the irreversible cessation of critical functions of the organism as a whole (that is, neuroendocrine and homeostatic regulation, circulation, respiration and consciousness), the whole brain concept is most widely accepted and practised. Since their first use in 1959 (REF. 1), the neurocentric criteria of death — as compared with the old cardiocentric criteria — are considered to be “among the safest medicine can achieve”149. In those instances in which confirmatory tests for brain death are desirable, irreversibility can, at present, be more reliably demonstrated for the whole brain concept (for example, by measuring lack of intracranial blood flow)149. However, with future technological advances and a better understanding and identification of the human cerebral ‘critical system’, the criteria might move further in the direction of brainstem death1.

In my view, neocortical death, as a confirmatory index for defining death, is conceptually inadequate and practically unfeasible. Clinical, electrophysiological, neuroimaging and post-mortem studies now provide clear and convincing neurophysiological and behavioural distinctions between brain death and the vegetative state. Similar lines of evidence also provide compelling data that neocortical death cannot be reliably demonstrated and is an insufficient criterion for establishing death.
Finally, death is a biological phenomenon for which we have constructed pragmatic medical, moral and legal policies on the basis of their social acceptance. The decision of whether a patient should live or die is a value judgment over which physicians can exert no specialized professional claim. The democratic traditions of our pluralistic society should permit personal freedom in patients’ decisions to choose to continue or terminate life–sustaining therapy in cases of severe brain damage. Like most ethical issues, there are plausible arguments supporting both sides of the debate. However, these issues can and should be tackled without changes being made to the current neurocentric definition of death. The benefits of using living humans in a vegetative state as organ donors do not justify the harm to society that could ensue from sacrificing the dead donor principle.

Many of the controversial issues relating to the death and end of life in patients with brain damage who have no hope of recovery result from confusion or ignorance on the part of the public or policy makers about the medical reality of brain death and the vegetative state. Therefore, the medical community should improve educational and public awareness programmes on the neurocentric criteria and testing of death; stimulate the creation of advance directives as a form of advance medical care planning; continue to develop clinical practice guidelines; and more actively encourage research on physiological and therapeutic benefit of treatment options in patients with severe brain damage.

What is the future of death? Improving technologies for brain repair and prosthetic support for brain functions (for example, stem cells, neurogenesis, neural computer prostheses, cryogenic suspension and nanomedical repair) might one day change our current ideas of irreversibility and force medicine and society to once again revise its definition of death.

Steven Laureys is at the Cyclotron Research Centre and Neurology Department, Université de Liège, Sart Tilman-B30, 4000 Liège, Belgium. e-mail: steven.laureys@ulg.ac.be

doi:10.1038/nrevneuro.1789

Box 5 | Death and the law

Under the US Uniform Determination of Death Act, a person is dead when physicians determine, by applying prevailing clinical criteria, that cardiorespiratory or brain functions are absent and cannot be retrieved. The neurocentric definition is purposefully redundant, requiring a determination that “all functions of the entire brain, including the brain stem” have irreversibly ceased. The American Academy of Neurology guidelines are shown in Box 2. The Canadian guidelines closely mirror these. In 1971, Finland was the first European country to accept brain death criteria. Since then, all EU countries have accepted the concept of brain death. However, although the required clinical signs are uniform, less than half the European countries that have accepted brain death criteria require technical confirmatory tests, and approximately half require more than one physician to be involved. Confirmatory tests are not mandatory in many third–world countries because they are simply not available. In Asia, death based on neurological criteria has not been uniformly accepted and there are major differences in regulation. India follows the UK criteria of brainstem death. China has no legal criteria and there seems to be some hesitation among physicians to disconnect the ventilator in patients with irreversible coma. Japan now officially recognizes brain death, although the public remains reluctant — possibly as a result of the heart surgeon Sura Wada, who was charged with murder in 1968 after removing a heart from a patient who was allegedly not brain dead. Australia and New Zealand have accepted whole brain death criteria.

Some legal scholars have also endorsed the neurocortical definition of death, without changes being made to the current definition of irreversible coma. The benevolent use of living humans in a vegetative state is a value judgment over which physicians to disconnect the ventilator in patients with irreversible coma.

Mr Herbert, who had been comatose for 7 days. However, their case was dismissed before Seifert, J. Is ‘brain death’ actually death? Neurology 50, 898–902 (1997).

Acknowledgments
The authors are Research Associate at the Belgian ‘Fonds National de la Recherche Scientifique’.

Competing interests statement
The authors declare no competing financial interests.

Online links
FURTHER INFORMATION
American Medical Association: www.ama-assn.org/ama/pub/category/9457.html
British Medical Association: www.bma.org.uk/acp/journals/Contents.jsp?OpenDocument&Highlight=2&vegetativestate
World Medical Association: http://www.who.int/nhsl/coordination/1993/01.htm
World Federation of Catholic Medical Associations and Pontifical Academy for Life: http://www.vegetativestate.org
United Network for Organ Sharing: http://www.unos.org/
Access to this interactive links box is free online.